|
简历
2001/09 - 2005/07,中国科学技术大学,化学物理系,理学学士
2005/09 - 2011/09,中国科学院大连化学物理研究所,物理化学,理学博士
2011/10 -2014/07,中国科学院大连化学物理研究所,助理研究员
2014/07 -2019/07,中国科学院大连化学物理研究所,副研究员
2019/07-至 今,中国科学院大连化学物理研究所,研究员
获奖荣誉
2023 获批国家自然科学基金委优秀青年基金
2020 大连化物所“张大煜青年学者”
2017 大连市青年科技之星
2016 中国科学院青年创新促进会
2016 辽宁省百千万人才“万”层次
2011 唐敖庆化学奖学金
研究方向
光与物质的相互作用是自然界普遍存在的现象。太阳能转化就是典型的涉及光与物质相互作用的过程。载流子的产生、分离、传递和表面化学反应是光伏和光催化这两个太阳能转化过程中最核心的问题,它们共同决定了光-电和光-化学转化的效率。尽管报道的效率在不断刷新,这其中仍然有很多兼具挑战性与启发性的科学问题。比如如何提高载流子的分离和传递效率?是否能够捕获“热”载流子以提高能量转换效率?光催化反应的基元步骤是什么?如何探测光催化反应的过渡态?载流子传递与界面的电子结构密切相关,光催化反应也发生在界面。避免从实验结果进行经验性的推断,用自行研制的先进物理化学实验方法直接对费米面附近的基态和激发态电子结构、载流子动力学以及表面化学动力学从时间、能量和动量上进行探测是我们的主要研究内容,结合理论计算,揭示表界面微观结构与电荷以及化学动力学之间的关联,从原子分子水平理解太阳能转化中的物理和化学过程。
1.光催化反应基元步骤
应用光电子能谱、程序升温脱附谱、扫描隧道显微镜等基于超高真空的表面分析技术,结合理论计算,从吸附结构、反应位、反应产物等方面揭示单晶材料模型体系中光催化反应的路径和动力学;比较超高真空条件和近常压条件下光催化反应基元过程的异同;应用金属纳米颗粒材料表面局域等离激元激发研究CO2还原等与能源环境密切相关的化学过程。
2.表界面超快电子动力学
表界面电子结构与光吸收、电荷分离与扩散、界面电荷传递密切相关,对理解太阳能转化过程至关重要。光电子能谱是测量电子结构最直接的手段之一。同时由于光电子的逃逸深度很浅,光电子能谱方法是表面敏感的技术。光电子发射过程满足能量和水平动量守恒,测量其动能和水平动量的对应关系,就能够获得材料的能带结构。将超快激光与光电子能谱方法结合,用泵浦-探测方法可以实现对固体材料表界面的电子结构及其动力学从时间、能量和动量方面的刻画。
3.表界面超快化学动力学
对于深能级如吸附质分子轨道和高动量空间的超快电子动力学的测量,常规非线性过程产生的超短脉冲,其光子能量(hv=6eV)已经不能满足实验要求,需要更高光子能量的超快光源。通过自行研制的基于高次谐波产生技术的时间分辨角分辨极紫外光电子能谱装置(hv=42eV),研究表界面电子和化学反应超快动力学,如光催化体系中动量分辨的瞬态能级匹配、金属纳米材料等离激光光催化反应的中间体。
过渡态的直接探测是化学反应研究的“圣杯”。过渡态浓度低、寿命短,对它的实验探测需要极高灵敏度的超快技术。自由电子激光技术的发展为该领域研究提供了前所未有的机遇。X射线自由电子激光具有超高亮度、超短脉冲和元素识别的特点。借助上海X射线自由电子激光的建设,我们将利用时间分辨X射线光谱技术对光催化反应过渡态的电子结构进行直接的实验探测,结合理论计算,明确过渡态结构。
招生招聘
研究代表成果
1.Adsorption Structure–Activity Correlation in the Photocatalytic Chemistry of Methanol and Water on TiO2(110)
Xia, S. #; Wang, T. #; Ren, Z.; Yang, X.; Guo, Q.*; Zhou, C.*, Acc Chem Res 2024, 57 (23), 3407-3418.
2.Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110)
Wang, Z.#; Gao, Y. #; Wang, T.; Chen, W.; Ren, Z.; Yang, X.; Zhou, C.*, Chin Chem Lett 2024.
3.Excitation Photon Energy-Dependent Carrier Multiplication in Graphite
Xia, S.; Xie, H.; Li, J.; Zhang, W.; Ren, Z.; Dai, D.; Yang, X.; Zhou, C.*, ACS Mater Lett 2024, 6 (12), 5484-5491.
4.Site-Selective Excitation of Ti3+ Ions in Rutile TiO2 via Anisotropic Intra-Atomic 3d→3d Transition
Li, J. #; Wang, T. #; Xia, S.; Chen, W.; Ren, Z.; Sun, M.; Che, L.*; Yang, X.; Zhou, C. *, JACS Au 2024, 4 (2), 491-501.
5.Ultraviolet Photoelectron Spectroscopy Study of the Adsorption and Electronic Structure at the CO2/TiO2(110) Interface
Xie, H.; Li, J.; Xia, S.; Wang, T.; Zhang, W.; Ren, Z.; Zhou, C.*, J Phys Chem C 2024, 128(13), 5708-5716.
6.Unveiling the Intrinsic Photophysics in Quasi-Two-Dimensional Perovskites
Li, B.-H. #; Di, H. #; Li, H. #; Wang, J.-C.; Zeng, W.; Cheng, D.-B.; Zhou, C.; Wang, X.; Shi, Y.; Song, J.; Zhao, Y. *; Yang, X.; Ren, Z. *, J Am Chem Soc 2024, 146 (10), 6974-6982.
7.Noncollinear Optical Parametric Amplification of Broadband Infrared Sum Frequency Generation Vibrational Spectroscopy
Zeng, W.#; Li, B.-H.#; Zeng, W.-W.; Zhou, C.; Yang, X.; Ren, Z.*, J Phys Chem Lett 2024, 15(9), 2470-2475.
8.General Normalizing Approach for Broadband Infrared Sum-Frequency Generation Spectroscopy via a Transmitted Signal in α-Quartz
Zeng, W.-W.; Luo, T.; Zhou, C.; Ren, Z.#, J Phys Chem C 2024, 128(9), 4018-4023.
9.Vibronic coupling of Rhodamine 6G molecules studied by doubly resonant sum frequency generation spectroscopy with narrowband infrared and broadband visible
Zeng, W.-W.; Luo, T.; Xu, P.; Zhou, C.; Yang, X.; Ren, Z.#, J Chem Phys 2024, 160(2), 024705.
10.Interaction of Atomic Deuterium with Rutile TiO2(011)-(2×1)
Chen, W. #; Gao, Y. #; Wang, T. *; Hao, Q.; Wang, Z.; Ren, Z.; Yang, X.; Zhou, C. *, J Phys Chem C 2023, 127 (14), 6723-6732.
11.Temperature-programmed desorption spectrometer combining minimum gas load, fast substrate replacement, and comprehensive temperature control
Xia, S.; Dong, S.; Xie, H.; Li, J.; Wang, T.; Zhang, W.; Che, L.; Ren, Z.; Dai, D.; Yang, X.; Zhou, C.*, Chinese J Chem Phys 2023, 36 (4), 373-383.
12.An apparatus for investigating the kinetics of plasmonic catalysis
Zhang, W.; Zhou, Y.*; Chen, W.; Wang, T.; Qin, Z.; Li, G.; Ren, Z.; Yang, X.; Zhou, C.*, Chinese J Chem Phys 2023, 36 (3), 249-258.
13.Probing the Genuine Carrier Dynamics of Semiconducting Perovskites under Sunlight
Li, B.-H.#; Li, H. #; Di, H. #; Xuan, Z. #; Zeng, W.; Wang, J.-C.; Cheng, D.-B.; Zhou, C.; Wang, X.; Zhao, Y.; Zhang, J.*; Ren, Z.*; Yang, X., JACS Au 2023, 3(2), 441-448.
14.Methanol Adsorption and Reaction on TiO2(110) at Near Ambient Pressure
Zhang, R. #; Luo, T. #; Zeng, W.-W.; Zhou, C.; Yang, X.; Ren, Z.*, J Phys Chem C 2023, 127(2), 1049-1056.
15.Carrier Dynamics in the Space Charge Layer of MoS2 Flakes Studied by Time-Resolved μ-Surface Photovoltage
Liang, Y.; Zhang, G.; Sun, J.; Zhou, C.; Li, Z.; Ye, Y.; Yang, X.; Ren, Z.*, J Phys Chem C 2023, 127(15), 7319-7326.
16.Development of in situ characterization of two-dimensional materials grown on insulator substrates with spectroscopic photoemission and low energy electron microscopy
Zhang, G.; Liu, L.; Zhou, S.; Liang, Y.; Sun, J.; Liu, L.; Zhou, C.; Jiao, L.; Yang, X.; Ren, Z. *, J Electron Spectrosc 2023, 264, 147318.
17.Validation of broadband infrared normalization in sum-frequency generation vibrational spectroscopy through simultaneous chiral terms on α-quartz crystal
Li, J.-J.; Zeng, W.-W.; Zeng, W.; Zeng, Q.; Zhou, C.; Yang, X.; Ren, Z. *, Chinese J Chem Phys 2023, 36(3), 265-271.
18.Valence Band of Rutile TiO2(110) Investigated by Polarized-Light-Based Angle-Resolved Photoelectron Spectroscopy
Dong, S.; Xia, S.; Wang, C.; Dong, J.; Wang, T.; Li, R.; Ren, Z.; Dai, D.; Yang, X.; Zhou, C. *, J Phys Chem Lett 2022, 13 (10), 2299-2305.
19.Anisotropic d–d Transition in Rutile TiO2
Wang, T. #; Chen, W. #; Xia, S.; Ren, Z.; Dai, D.; Yang, X.; Zhou, C. *, J Phys Chem Lett 2021, 12 (43), 10515-10520.
20.Origin of the Adsorption-State-Dependent Photoactivity of Methanol on TiO2(110)
Dong, S. #; Hu, J. #; Xia, S. #; Wang, B.; Wang, Z.; Wang, T.; Chen, W.; Ren, Z.; Fan, H.; Dai, D.; Cheng, J. *; Yang, X.; Zhou, C. *,. ACS Catalysis, 2021, 11 (5), 2620-2630.
21.Spatially heterogeneous ultrafast interfacial carrier dynamics of 2D-MoS2 flakes
Liang, Y. #; Li, B.-H. #; Li, Z. #; Zhang, G.; Sun, J.; Zhou, C.; Tao, Y.; Ye, Y. *; Ren, Z. *; Yang, X., Materials Today Physics 2021, 21, 100506.
22.Alkoxylation Reaction of Alcohol on Silica Surfaces Studied by Sum Frequency Vibrational Spectroscopy
Luo, T. #; Zhang, R. #; Zeng, W.-W.; Zhou, C.; Yang, X.; Ren, Z. *, J Phys Chem C 2021, 125(16), 8638-8646.
23.Hydrophobic Modification of Silica Surfaces via Grafting Alkoxy Groups
Luo, T.; Zeng, W.-W.; Zhang, R.; Zhou, C.; Yang, X.; Ren, Z. *, ACS Applied Electronic Materials 2021, 3 (4), 1691-1698.
24.Efficient generation of narrowband picosecond pulses from a femtosecond laser
Liu, X.; Li, B.-H.; Liang, Y.; Zeng, W.; Li, H.; Zhou, C.; Ren, Z. *; Yang, X., Rev Sci Instrum 2021, 92 (8), 083001.
25.Ultrahigh sensitive transient absorption spectrometer
Li, H.; Hu, G.; Li, B.-H.; Zeng, W.; Zhang, J.; Wang, X.; Zhou, C.; Ren, Z. *; Yang, X., Rev Sci Instrum 2021, 92 (5), 053002.
26.Role of Pt Loading in the Photocatalytic Chemistry of Methanol on Rutile TiO2(110)
Hao, Qunqing#; Wang, Zhiqiang#; Wang, Tianjun; Ren, Zefeng; Zhou, Chuanyao*; Yang, Xueming*, ACS Catalysis, 2019, 9(1): 286-294.
27.Single Molecule Photocatalysis on TiO2 Surfaces
Guo, Qing#; Ma, Zhibo#; Zhou, Chuanyao; Ren, Zefeng; Yang, Xueming*, Chemical Reviews, 2019, 119(20): 11020-11041.
28.Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges
Guo, Qing; Zhou, Chuanyao; Ma, Zhibo; Yang, Xueming*, Advanced Materials, 2019, 31(50): 1901997.
29.Adsorption Structure and Coverage-Dependent Orientation Analysis of Sub-Monolayer Acetonitrile on TiO2(110)
Zhang, Ruidan#; Dong, Jichao#; Luo, Ting; Tang, Fujie; Peng, Xingxing; Zhou, Chuanyao; Yang, Xueming; Xu, Limei*; Ren, Zefeng*, Journal of Physical Chemistry C, 2019, 123(29): 17915-17924.
30.Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons
Zhang, X.; Du, L.; Zhao, W.; Zhao, Z.; Xiong, Y.; He, X.; Gao, P. F.; Alam, P.; Wang, C.; Li, Z.; Leng, J.; Liu, J.; Zhou, C.; Lam, J. W. Y.; Phillips, D. L. *; Zhang, G. *; Tang, B. Z. *, Nature Communications, 2019, 10 (1), 5161.
31.Active Species in Photocatalytic Reactions of Methanol on TiO2(110) Identified by Surface Sum Frequency Generation Vibrational Spectroscopy
Peng, Xingxing; Zhang, Ruidan; Feng, Ran-ran; Liu, An-an; Zhou, Chuanyao; Guo, Qing; Yang, Xueming; Jiang, Ying; Ren, Zefeng*, Journal of Physical Chemistry C, 2019, 123(22): 13789-13794.
32.In Situ Studies on Temperature-Dependent Photocatalytic Reactions of Methanol on TiO2(110)
Zhang, Ruidan#; Wang, Haochen#; Peng, Xingxing; Peng, Ran-ran; Liu, An-an; Guo, Qing; Zhou, Chuanyao; Ma, Zhibo*; Yang, Xueming; Jiang, Ying; Ren, Zefeng*, Journal of Physical Chemistry C, 2019, 123(15): 9993-9999.
33.Flexible high-resolution broadband sum-frequency generation vibrational spectroscopy for intrinsic spectral line widths
Zhang, Ruidan; Peng, Xingxing; Jiao, Zhirun; Luo, Ting; Zhou, Chuanyao; Yang, Xueming; Ren, Zefeng*, Journal of Chemical Physics, 2019, 150(7): 074702.
34.Femtosecond time-resolved spectroscopic photoemission electron microscopy for probing ultrafast carrier dynamics in heterojunctions
Li, Bo-han; Zhang, Guan-hua*; Liang, Yu; Hao, Qun-qing; Sun, Ju-long; Zhou, Chuan-yao; Tao, You-tian; Yang, Xue-ming; Ren, Ze-feng*, Chinese Journal of Chemical Physics, 2019, 32(4): 399-405.
35.A broadband sum-frequency generation vibrational spectrometer to probe adsorbed molecules on nanoparticles
Luo, T.; Zhang, R.; Peng, X.; Liu, X.; Zhou, C.; Yang, X.; Ren, Z.*, Surface Science, 2019, 689, 121459.
36.Observation and Manipulation of Visible Edge Plasmons in Bi2Te3 Nanoplates
Lu, Xiaowei#; Hao, Qunqing#; Cen, M.; Zhang, G.; Sun, J.; Mao, L.; Cao, T.*; Zhou, Chuanyao*; Jiang, Peng*; Yang, Xueming; Bao, Xinhe*, Nano Letters, 2018, 18(5): 2879-2884.
37.Excess electrons in reduced rutile and anatase TiO2
Wen-Jin Yin; Bo Wen; Chuanyao Zhou; Annabella Selloni; Li-Min Liu*, Surface Science Reports, 2018, 73(2): 58-82.
38.Elementary Chemical Reactions in Surface Photocatalysis
Guo, Qing; Zhou, Chuanyao; Ma, Zhibo; Ren, Zefeng; Fan, Hongjun; Yang, Xueming*, Annual Review of Physical Chemistry, 2018, 69: 451-472.
39.Deuterium Kinetic Isotope Effect in the Photocatalyzed Dissociation of Methanol on TiO2(110)
Wang, Tianjun; Hao, Qunqing; Wang, Zhiqiang; Mao, Xinchun; Ma, Zhibo; Ren, Zefeng; Dai, Dongxu; Zhou, Chuanyao*; Yang, Xueming*, The Journal of Physical Chemistry C, 2018, 122(46): 26512-26518.
40.Electronic structure and photoabsorption of Ti3+ ions in reduced anatase and rutile TiO2
Wen, Bo#; Hao, Qunqing#; Yin, Wen-Jin; Zhang, Le; Wang, Zhiqiang; Wang, Tianjun; Zhou, Chuanyao*; Selloni, Annabella; Yang, Xueming; Liu, Li-Min*, Physical Chemistry Chemical Physics, 2018, 20(26): 17658-17665.
41.Elementary reactions in surface photocatalysis
Guo Qing, Zhou Chuanyao, Ma Zhibo, Ren Zefeng, Fan Hongjun, Yang Xueming, Scientia Sinica Chimica, 2018, 48(02): 114-126.
42.Photoelectron Spectroscopic Study of Methanol Adsorbed Rutile TiO2(110) Surface
Hao, Qunqing; Wang, Zhiqiang; Dai, Dongxu; Zhou, Chuanyao*; Yang, Xueming*, Chinese Journal of Chemical Physics, 2017, 30(6): 626-630.
43.Macroscopic Wires from Fluorophore-Quencher Dyads with Long-Lived Blue Emission
Wang, T.; Wu, Z.; Sun, W.; Jin, S.; Zhang, X.*; Zhou, C.*; Jiang, J.; Luo, Y.; Zhang, G.*, J Phys Chem A, 2017, 121 (38), 7183-7190.
44.Elementary photocatalytic chemistry on TiO2 surfaces
Guo Qing#; Zhou Chuanyao#; Ma Zhibo; Ren Zefeng*; Fan Hongjun*; Yang Xueming*, Chemical Society Reviews, 2016, 45(13): 3701-3730.
45.Fundamental Processes in Surface Photocatalysis on TiO2
Guo Qing; Zhou Chuanyao; Ma Zhibo; Ren Zefeng; Fan Hongjun; Yang Xueming*, Acta Physico- Chimica Sinica, 2016, 32(1): 28-47.
46.Photocatalytic chemistry of methanol on rutile TiO2(011)-(2×1)
Wang Zhiqiang#; Hao Qunqing#; Mao Xinchun; Zhou Chuanyao*; Dai Dongxu; Yang Xueming*, Physical Chemistry Chemical Physics, 2016, 18: 10224-10231.
47.Facet Dependence of Photochemistry of Methanol on Single Crystalline Rutile Titania
Hao Qunqing; Wang Zhiqiang; Mao Xinchun; Zhou Chuanyao*; Dai Dongxu; Yang Xueming*, Chinese Journal of Chemical Physics, 2016, 29(1): 105-111.
48.Effect of Surface Structure on the Photoreactivity of TiO2
Xinchun Mao#; Zhiqiang Wang#; Xiufeng Lang#; Qunqing Hao; Bo Wen; Dongxu Dai; Chuanyao Zhou*; Li-Min Liu*; Xueming Yang*, Journal of Physical Chemistry C, 2015, 119(11): 6121-6127.
49.Recombination of Formaldehyde and Hydrogen Atoms on TiO2(110)
Xinchun Mao#; Dong Wei#; Zhiqiang Wang#; Xianchi Jin; Qunqing Hao; Zefeng Ren; Dongxu Dai; Zhibo Ma*; Chuanyao Zhou*; Xueming Yang*, Journal of Physical Chemistry C, 2015, 119(2): 1170-1174.
50.Coverage Dependence of Methanol Dissociation on TiO2(110)
Liu Shuo#; Liu An-an#; Wen Bo#; Zhang Ruidan; Zhou Chuanyao; Liu Li-Min*; Ren Zefeng*, The Journal of Physical Chemistry Letters, 2015, 6(16): 3327-3334.
51.Localized Excitation of Ti3+ Ions in the Photoabsorption and Photocatalytic Activity of Reduced Rutile TiO2
Wang, Zhiqiang#; Wen, Bo#; Hao, Qunqing#; Liu, Li-Min*; Zhou, Chuanyao*; Mao, Xinchun; Lang, Xiufeng; Yin, Wen-Jin; Dai, Dongxu; Selloni, Annabella*; Yang, Xueming*, Journal of the American Chemical Society, 2015, 137(28): 9146-9152.
52.Excitation Wavelength Dependence of Photocatalyzed Oxidation of Methanol on TiO2(110)
Wang Zhiqiang; Hao Qunqing; Zhou Chuanyao*; Dai Dongxu; Yang Xueming*, Chinese Journal of Chemical Physics, 2015, 28(4): 459-464.
53.Characterization of the Excited State on Methanol/TiO2(110) Interface
Wang, Zhi-qiang; Hao, Qun-qing; Mao, Xin-chun; Zhou, Chuan-yao*; Ma, Zhi-bo; Ren, Ze-feng; Dai, Dong-xu; Yang, Xue-ming*, Chinese Journal of Chemical Physics, 2015, 28(2): 123-127.
54.First-Principles Study of Methanol Oxidation into Methyl Formate on Rutile TiO2(110)
Lang, Xiufeng; Wen, Bo; Zhou, Chuanyao; Ren, Zefeng; Liu, Li-Min*, Journal of Physical Chemistry C, 2014, 118(34): 19859-19868.
55.Band-Gap States of TiO2(110): Major Contribution from Surface Defects
Mao, Xinchun#; Lang, Xiufeng#; Wang, Zhiqiang; Hao, Qunqing; Wen, Bo; Ren, Zefeng; Dai, Dongxu; Zhou, Chuanyao*; Liu, Li-Min*; Yang, Xueming*, Journal of Physical Chemistry Letters, 2013, 4(22): 3839-3844.
56.Photocatalytic Dissociation of Ethanol on TiO2(110) by Near-Band-Gap Excitation
Ma, Zhibo#; Guo, Qing#; Mao, Xinchun; Ren, Zefeng; Wang, Xu; Xu, Chenbiao; Yang, Wenshao; Dai, Dongxu; Zhou, Chuanyao*; Fan, Hongjun*; Yang, Xueming*, Journal of Physical Chemistry C, 2013, 117(20): 10336-10344.
57.Kinetics and Dynamics of Photocatalyzed Dissociation of Ethanol on TiO2(110)
Ma, Zhi-bo; Zhou, Chuan-yao*; Mao, Xin-chun; Ren, Ze-feng; Dai, Dong-xu; Yang, Xue-ming*, Chinese Journal of Chemical Physics, 2013, 26(1): 1-7.
58.Surface photochemistry probed by two-photonphotoemission spectroscopy
Zhou, Chuanyao#; Ma, Zhibo#; Ren, Zefeng; Wodtke, Alec M.; Yang, Xueming*, Energy & Environmental Science, 2012, 5(5): 6833-6844.
59.Effect of defects on photocatalytic dissociation of methanol on TiO2(110)
Zhou, Chuanyao#; Ma, Zhibo#; Ren, Zefeng*; Mao, Xinchun; Dai, Dongxu; Yang, Xueming*, Chemical Science, 2011, 2(10): 1980-1983.
60.Site-specific photocatalytic splitting of methanol on TiO2(110)
Zhou, Chuanyao#; Ren, Zefeng#; Tan, Shijing#; Ma, Zhibo; Mao, Xinchun; Dai, Dongxu; Fan, Hongjun*; Yang, Xueming*; LaRue, Jerry; Cooper, Russell; Wodtke, Alec M.; Wang, Zhuo; Li, Zhenyu; Wang, Bing*; Yang, Jinlong; Hou, Jianguo, Chemical Science, 2010, 1(
61.A Surface Femtosecond Two-Photon Photoemission Spectrometer for Excited Electron Dynamics and Time-Dependent Photochemical Kinetics
Ren, Ze-feng#; Zhou, Chuan-yao#; Ma, Zhi-bo; Xiao, Chun-lei; Mao, Xin-chun; Dai, Dong-xu; LaRue, Jerry; Cooper, Russell; Wodtke, Alec M.; Yang, Xue-ming*, Chinese Journal of Chemical Physics, 2010, 23(3): 255-261.
申请专利
1.董珊珊,周传耀,夏树才,一种在超高真空系统内精确气体进样、采集的分析装置,ZL 202010655472.6。
2.张文,周传耀,一种多功能的等离激元催化反应装置,ZL 202211014307.8。
3.夏树才,周传耀,董珊珊,基于高次谐波产生的时间分辨角分辨紫外光电子能谱装置,ZL 202011336830.3。
4.陈伟,周传耀,陈晓,一种用于程序升温脱附谱的样品台,20221151333.5,已受理。
主持及参与项目
主持项目:
01/2024-12/2026 国家自然科学基金优秀青年基金(22322306)
01/2020-12/2023 国家自然科学基金面上项目(21973092)
01/2016-12/2019 国家自然科学基金面上项目(21573225)
01/2013-12/2015 国家自然科学基金青年基金(21203189)
01/2022-12/2026 国家重点研发计划课题(2021YFA1500601)
01/2017-12/2020 中国科学院青年创新促进会项目(2017224)
01/2016-12/2017 中国科学院科研装备研制项目(YZ201504)
07/2015-06/2017 辽宁省自然科学基金面上项目(2015020242)
01/2018-12/2019 大连市青年科技之星(2017RQ044)
参与项目(课题骨干):
06/2021-05/2026 中国科学院基础研究领域优秀青年团队(YSBR-007)
07/2016-06/2021 国家重点研发计划(2016YFA0200602)
05/2018-04/2023 国家重点研发计划(2018YFA0208703)
培养学生
王天骏
wangtj@shanghaitech.edu.cn
陈伟
chenwei1102@dicp.ac.cn
董珊珊
ssdong@dicp.ac.cn
夏树才
scxia@dicp.ac.cn
谢慧智
1146078377@qq.com
已毕业学生
毛新春,中国工程物理研究院材料研究所
王志强,西安电子科技大学
郝群庆,中国工程物理研究院材料研究所
王天骏,深圳综合粒子设施研究院,副研究员
董珊珊,英特尔半导体(大连)有限公司
夏树才,中国科学院大连化学物理研究所,博士后
陈伟,费勉仪器科技(上海)有限公司
董敬伟,中国科学院大连化学物理研究所
李甲龙,中微半导体设备有限公司
近期工作成果展示
1. TiO2中的Ti3+点缺陷的电子结构
1.1 揭示TiO2中Ti3+电子结构的物理本质及其对光吸收的影响
作为光催化、太阳能转化等诸多研究领域的模型催化剂,二氧化钛容易被还原,形成Ti3+并伴随Ti 3d性质带隙态的出现。带隙态是TiO2中d→d跃迁的基态电子态,与光吸收密切相关,如还原性TiO2呈蓝色以及Ti3+自掺杂实现可见光催化。相比于对带隙态的透彻研究,对激发态的了解非常有限。结合双光子光电子能谱(2PPE)和理论计算,发现TiO2(110)费米能级以上2.5±0.2 eV处的电子激发态是一个与Ti3+相关的固有电子态,并且明确了带隙态的dxy属性和激发态的dxz/dyz/dz2属性。由于带隙态和激发态都有很宽的分布(>0.5 eV),这样一个d-d跃迁将光吸收从紫外波段扩展到了可见波段。该成果一方面澄清了TiO2(110)费米能级以上2.5±0.2 eV处电子激发态的物理本质,另一方面解释了Ti3+自掺杂对TiO2吸收光谱的扩展进而实现可见光催化的原因,同时为研究金属氧化物的基态和激发态电子结构提供了一个范例(J. Am. Chem. Soc., 2015, 137, 9146)。
1.2实现金红石TiO2中Ti3+缺陷位点的选择性激发
位点选择激发(Site-Selective Excitation; SSE)是操控单分子反应动力学、分析晶体结构、调控材料发光、研究蛋白质结构和相互作用的重要手段。SSE通常是利用物质局部振动/电子结构的不同通过调谐激发光波长来实现的。模型材料中的位点选择激发鲜有报道。金红石TiO2是光催化和表面科学研究领域的模型体系,在前期揭示Ti3+ 3d轨道在TiO6八面体中劈裂形成带隙态和激发态的基础上,研究人员利用衬底晶面、衬底晶向和激发光偏振相关的双光子光电子能谱,明确了金红石TiO2中Ti3+ 3d→3d的跃迁偶极矩沿着TiO6八面体的长轴([110]和[1-10]),证明了该材料中Ti3+缺陷位点可通过调谐激发光偏振来选择性激发。特别是金红石TiO2(110)表面的两种Ti3+位点,选择性激发为后续研究原子位点识别的表面物理和表面化学过程以及主动调控奠定了基础(JACS Au, 2024, 4, 491)。
2. TiO2表面光催化反应分子机理
2.1 首次从单分子水平观测到甲醇在TiO2(110)表面的光催化解离
TiO2光催化分解水的效率非常低,但是加入牺牲试剂甲醇能大大提高产氢效率。虽然甲醇在这个体系中作为空穴捕获体被大家熟知,但是甲醇在TiO2表面的光物理和光化学性质缺少原子分子层面的认识。应用自行发展的实时双光子光电子能谱,在单层甲醇覆盖的TiO2(110)表面发现了一个位于费米能级以上2.4 eV的光诱导的激发电子态,并结合扫描隧道显微镜技术(STM)和密度泛函理论计算(DFT),发现该激发态与甲醇的解离密切相关(甲醇解离H原子转移到桥氧上,将Ti4+还原成Ti3+,2PPE将Ti3+ 缺陷的d-d跃迁作为指针来跟踪反应的宏观动力学),首次从单分子水平给出了甲醇在TiO2(110)表面Ti5c位光催化解离的直接证据(Chemical Science, 2010, 1, 575)。该工作一方面明确了甲醇在TiO2(110)表面Ti5c位以分子形式而不是解离形式吸附,进而通过光催化解离,消除了多年的争议。Mike A. Henderson博士在其综述文章中(Surface Science Reports, 2011, 66, 185)评价该工作是对甲醇在单晶TiO2表面光化学的第一次机理性研究;该工作被Science (2010, 330, 12)以Breaking Methanol为题highlight,同时被Chemistry World评为Cutting Edge Chemistry in 2010 (http://www.rsc.org/chemistryworld/News/2010/ December/2112101.asp)。
2.2阐明了表面结构对ROH/TiO2(R=CH3,H)体系光催化反应动力学调控的机制
TiO2(110)表面Ti5c位甲氧基负离子的光化学活性比甲醇高得多,但是甲醇在TiO2(110)表面的光催化反应动力学与其吸附结构密切相关的深层原因并不清楚。结合紫外光电子能谱(UPS)和DFT计算,我们发现反应动力学差异来源于吸附质对界面电子结构的调控以及对空穴的捕获能力。有效的电荷分离以及热力学允许的界面空穴传递使得甲氧基负离子在TiO2表面具有光化学活性,而甲醇分子则不反应。使用脉冲激光激发光化学反应可能在高峰值功率条件下促进甲醇转变成甲氧基负离子,从而表现出光化学活性(ACS Catalysis, 2021, 11, 2620)。
Pt助催化剂是光催化中常用的促进电荷分离的电子受体,此外Pt还可以提供反应场所,降低还原反应势垒,从而提高光催化产氢效率。应用程序升温脱附谱(TPD)和UPS首次从表面科学角度研究了CH3OH在Pt/TiO2(110)模型体系表面的光化学,发现Pt能通过调控界面电子结构、促进甲醇转化成甲氧基负离子、降低产物H的脱附温度来大幅度提高甲醇的光催化氧化速率(ACS Catalysis, 2019, 9, 286)。
在H2O/TiO2表面也发现了与CH3OH/TiO2表面类似的与吸附结构密切相关的光催化反应活性(Chin Chem Lett, 2024,10.1016/j.cclet.2024.110602),应邀撰写了吸附结构与光催化活性关联的综述论文(Acc Chem Res, 2024,57, 3407)。
3.实现了石墨载流子倍增在能量和动量维度的直接观测
从时间、能量和动量维度认识晶体材料被光激发后的载流子动力学对理解材料本身的性质和优化能量转化效率至关重要。常规的时间分辨技术往往不能获得动量信息,角分辨光电子能谱是研究动量分辨电子结构(能带结构)的利器,结合泵浦-探测技术就能研究载流子在能量和动量空间的演化。根据能量和动量守恒定律,对于高动量空间电子结构(如石墨狄拉克点和单层MoS2价带顶和导带底)的测量需要极紫外波段的光源。为此,我们利用高次谐波产生技术获得了42eV的超快激光,并将其与角分辨光电子能谱结合研制了飞秒时间分辨角分辨极紫外光电子能谱仪。
本工作中,我们利用该仪器研究了紫外光和红外光激发下石墨狄拉克点附近的载流子动力学,发现了导带底部载流子的优先增加,系统分析后将其归结为碰撞电离。由于散射空间和剩余能量的变化,紫外光激发比红外光激发具有更高的碰撞电离效率,从而具有更有效的载流子倍增。该工作为石墨中激发光子能量相关的载流子倍增提供了直接证据(ACS Mater Lett, 2024, 6, 5484)。