所网站    |    室网站
 
网站首页 新闻动态 研究方向 人才队伍 荣誉成果 招聘招生 关于我们
超快激光技术与动力学研究组 (1116组)
组群介绍
基元反应动力学研究组
团簇光谱与动力学研究组
反应动力学理论与计算研究组
表面反应动力学研究组
自由电子激光技术研究组
超快激光技术与动力学研究组
大连光源
超快激光技术与动力学研究组 (1116组)

小组简介

       1116组组长是吴国荣研究员,包括研究员2人,副研究员1人,助理研究员1人,博士后1人,学生9人,其他工作人员3人。研究内容是利用现代的超快激光技术,结合谱学技术来研究超快的化学、物理过程的动力学,包括气相,液相和凝聚相。

研究人员

组长


            吴国荣
 

研究人员


            袁开军

             陈志超

        贺志刚
   
 

博士后


            隋来志
 

学生


            杨栋元

    闵彦钧

    张琦

    常尧

        赵亚锐
 

            吴鼎

        姜淏天

        陈震

        王黑龙
 
 

其他工作人员


            张雨桐

             田宇欢

        牛光明
   


研究方向

1、分子体系激发态超快动力学 (负责人:吴国荣)

化学反应:化学键的断裂和形成,涉及原子核的重新组合和电子云的重新分布。在基电子态化学反应中,原子核和电子的运动一般可以分开,也就是所谓的波恩-奥本海默近似;然而在电子激发态,原子核和电子的运动往往强烈地耦合在一起,导致所谓的非绝热、无辐射过程,包括内转换、同分异构化、电子和质子转移、系间穿越等。激发态非绝热反应过程往往发生在飞秒和皮秒时间尺度,是几乎所有的多原子分子激发态光化学的核心过程, 也是很多光生物化学过程的关键步骤,例如视觉过程、光合作用过程等。激发态非绝热过程的研究对于深入理解光化学、光物理和光生物过程至关重要,也是研究大气化学、燃烧化学、复杂生物化学过程的基础。

实验手段:时间分辨的光电子/离子速度成像
分子体系的激发态动力学往往发生在飞秒和皮秒时间尺度。现代的飞秒激光技术为研究这样的超快过程提供了很好的实验手段:利用一束飞秒激光脉冲来触发激发态的动力学过程(泵浦),然后利用另外一束飞秒激光脉冲来实时地观测能量和电荷的重新分布(探测),从而研究这些过程的动力学,这就是所谓的时间分辨的研究,也就是泵浦/探测技术。根据实验的种类和研究的内容,可以采用不同的探测手段,包括瞬态吸收谱、激光诱导荧光、X射线或电子衍射、光电子能谱等。在时间分辨的光电子能谱中,探测步骤采用光电离。由于光电子能谱对分子的振动和电子自由度都敏感,再加上其它的一些特点,已经成为分子体系激发态动力学研究的理想手段。

代表性文章:

Ultrafast excited-state dynamics of 2,5-dimethylpyrrole, Dongyuan Yang, Yanjun Min, Zhichao Chen, Zhigang He, Kaijun Yuan, Dongxu Dai, Xueming Yang, and Guorong Wu, Phys. Chem. Chem. Phys. Accepted. pdf

A new kHz velocity map ion/electron imaging spectrometer for femtosecond time-resolved molecular reaction dynamics studies, Zhigang He, Zhichao Chen, Dongyuan Yang, Dongxu Dai, Guorong Wu, and Xueming Yang, Chin. J. Chem. Phys. 30, 247 (2017).pdf

Ultrafast excited-state dynamics of 2,4-dimethylpyrrole, Dongyuan Yang, Zhichao Chen, Zhigang He, Hengding Wang, Yanjun Min, Kaijun Yuan, Dongxu Dai, Guorong Wu, and Xueming Yang, Phys. Chem. Chem. Phys. 19, 29146 (2017).pdf

An accidental resonance mediated predissociation pathway of water molecules excited to the electronic C state, Zhigang He, Dongyuan Yang, Zhichao Chen, Kaijun Yuan, Dongxu Dai, Guorong Wu, and Xueming Yang, Phys. Chem. Chem. Phys. 19, 29795 (2017).pdf

Excited state non-adiabatic dynamics of N-methylpyrrole: a time-resolved photoelectron spectroscopy and quantum dynamics study, Guorong Wu, Simon Neville, Oliver Schalk, Taro Sekikawa, Michael Ashfold, Graham Worth, and Albert Stolow,  J. Chem. Phys. 144, 014309 (2016).pdf

Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study, Guorong Wu, Simon P. Neville, Oliver Schalk, Taro Sekikawa, Michael N. R. Ashfold, Graham A. Worth, and Albert Stolow, J. Chem. Phys. 142, 074302 (2015).pdf

Internal conversion versus intersystem crossing: what drives the gas phase dynamics of cyclic ,-enones? Oliver Schalk, Michael S. Schuurman, Guorong Wu, Peter Lang, Melanie Mucke, Raimund Feifel, and Albert Stolow, J. Phys. Chem. A 118, 2279-2287 (2014).pdf

Initial process of proton transfer in salicylideneaniline studied by time-resolved photoelectron spectroscopy, Taro Sekikawa, Oliver Schalk, Gourong Wu, Andrey E. Boguslavskiy , and Albert Stolow, J. Phys. Chem. A 117, 2971 (2013).pdf

Ultrafast photoinduced dynamics of halogenated cyclopentadienes: observation of geminate charge-transfer complexes in solution, T. J. A. Wolf, O. Schalk, R. Radloff, G, Wu, P. Lang, A. Stolow, and A.-N. Unterreiner, Phys. Chem. Chem. Phys. 15, 6673 (2013).pdf

Ultrafast non-adiabatic dynamics of methyl substituted ethylenes: The 3s Rydberg
state, Guorong Wu, Andrey E. Boguslavskiy, Oliver Schalk, and Albert Stolow, J.
Chem. Phys. 135, 164309 (2011).pdf

From Molecular Control to Quantum Technology With the Dynamic Stark Effect, Philip J. Bustard, Guorong Wu, Rune Lausten, Albert Stolow, Ian A. Walmsley, and Benjamin J. Sussman, invited paper to Faraday Discussions 153, 321-342 (2011).pdf

Time-resolved photoelectron spectroscopy: from wavepackets to observables, Guorong Wu, Paul Hockett, and Albert Stolow, Phys. Chem. Chem. Phys. 13, 18447 (2011).pdf

Following the excited state relaxation dynamics of indole and 5-hydroxyindole using time-resolved photoelectron spectroscopy, Ruth Livingstone, Oliver Schalk, Andrey E. Boguslavskiy, Guorong Wu, Albert Stolow, and Dave Townsend, J. Chem. Phys. 135, 194307 (2011).pdf

Quantum random bit generation using stimulated Raman scattering, Philip J. Bustard, Doug Mofatt, Rune Lausten, Guorong Wu, Ian A. Walmsley, and Benjamin J. Sussman, Optics Express 19, 25173 (2011).pdf




2、凝聚相超快动力学(二维红外光谱)(负责人:袁开军)

凝聚相超快动力学:主要研究凝聚相(溶液或者固体)中超快化学反应,氢键动力学,小分子、多肽和蛋白的瞬态结构变化,单晶固体中的能量传递与转动弛豫,以及界面超快动力学,纳米材料、二维材料中的电荷转移,电子振动耦合传能等等。实验室的特色是超快泵浦探测技术结合飞秒红外瞬态光谱技术。通过对分子的化学键选择性激发,并跟踪探测被激发的化学键的频率变化得到分子结构动力学信息,是理想的分子动力学实时探测的工具。

实验手段:

1. 红外泵浦(皮秒)-红外探测(飞秒) 
用一束窄带宽的皮秒红外激光选择激发分子的化学键,一定时间延迟后一束飞秒红外激光探测分子化学键随时间的演变,得到分子动力学的信息。主要研究课题如:分子化学键之间的能量传递、化学交换、分子结构异构化、振动模式耦合、分子转动弛豫等 
2. 紫外/可见泵浦-红外探测
用一束飞秒紫外/可见光激发分子或材料到电子激发态,一定时间延迟后一束飞秒红外光探测分子化学键随时间的演变,得到电子振动耦合信息。主要研究课题如:光热转化(激发态电子与分子化学键之间的能量转移),二维材料异质结间的激子激发与转移等,液相光解动力学/液相反应动力学
3. 紫外/可见泵浦-红外(皮秒)泵浦-红外探测(飞秒)
用一束飞秒紫外/可见光激发分子或材料到电子激发态,然后一束皮秒红外光选择性激发分子的化学键,一定时间延迟后第三束飞秒光探测分子动力学的变化信息,看振动激发在电子振动耦合中的作用。主要研究课题如:分子振动激发调控电荷转移通道/电子振动耦合等。

代表性文章:

The molecular rotational motion of liquid ethanol studied by ultrafast time resolved infrared spectroscopy, Ganghua Deng, Yuneng Shen, Zhigang He, Qiang Zhang, Bo Jiang, Kaijun Yuan, Guorong Wu, and Xueming Yang, Phys. Chem. Chem. Phys. 19, 4345 (2017).pdf
  
Solvation structure around the Li+ ion in succinonitrile-lithium salt plastic crystalline electrolytes, Yuneng Shen, Ganghua Deng, Chuanqi Ge, Yuhuan Tian, Guorong Wu, Xueming Yang, Junrong Zheng, and Kaijun Yuan, Phys. Chem. Chem. Phys. 18, 14867 (2016).pdf

Negligible Isotopic Effect on Dissociation of Hydrogen Bonds, Chuanqi Ge, Yuneng Shen, Ganghua Deng,Yuhuan Tian, Dongqi Yu, Xueming Yang, Kaijun Yuan, and Junrong Zheng, J. Phys. Chem. B 120,3187(2016).pdf 

The Anion Effect on Li+ Ion Coordination Structure in Ethylene Carbonate Solutions.Bo Jiang, Veerapandian Ponnuchamy, Yuneng Shen, Xueming Yang, Kaijun Yuan, Vetere Valentina, Stefano Mossa, Ioannis Skarmoutsos, Yufan Zhang, and Junrong Zheng, J. Phys. Chem. Lett. 7, 3554(2016).pdf

Two distinctive energy migration pathways of monolayer molecules on metal nanoparticle surfaces, Jiebo Li, Huifeng Qian, Hailong Chen, Zhun Zhao, Kaijun Yuan, Guangxu Chen, Andrea Miranda, Xunmin Guo, Yajing Chen, Nanfeng Zheng, Wong M. S, and Junrong Zheng, Nat.Commun. 7,10749(2016).pdf

Nonresonant Vibrational Energy Transfer on Metal Nanoparticle/Liquid Interface, Jiebo Li, Kaijun Yuan, Hailong Chen, Andrea Miranda, Yuneng Shen, Bo Jiang,Yajing Chen,Yufan Zhang,Xunmin Guo, and Junrong Zheng, J. Phys. Chem. C 120, 25173 (2016).pdf

Comparison Studies on Sub-Nanometer-Sized Ion Clusters in Aqueous Solutions: Vibrational Energy Transfers, MD Simulations, and Neutron Scattering, Yuneng Shen, Tianmin Wu, Bo Jiang, Ganghua Deng, Jiebo Li, Hailong Chen, Xunmin Guo, Chuanqi Ge,Yajin Chen, Jieya Hong, Xueming Yang, Kaijun Yuan, Wei Zhuang and Junrong Zheng, J. Phys. Chem. B 119, 9893 (2015).pdf

Coordination number of Li+ in nonaqueous electrolyte solutions determined by molecular rotational measurements, Kaijun Yuan, Hongtao Bian, Yuneng Shen, Bo Jiang, Jiebo Li, Yufan Zhang, Hailong Chen, and Junrong Zheng, J. Phys. Chem. B 118, 3689 (2014).pdf

Molecular conformations and dynamics on surfaces of gold nanoparticles probed with multiple-mode multiple-dimensional infrared spectroscopy, Hongtao Bian, Jiebo Li, Hailong Chen, and Kaijun Yuan, J. Phys. Chem. C 14, 116 (2012): pdf




3、气相分子光化学动力学研究(负责人:袁开军,陈志超)

介绍
气相分子光化学动力学在大气化学和环境化学有重要作用,比如“臭氧空洞”机理研究就得益于分子光化学的研究。气相分子光化学在星际化学研究中也发挥着重要的作用。近年来随着我国空间技术的大力发展,如天文观测站和天文望远镜的建设、神舟系列飞船的探月计划以及天宫空间站的建立等等,太空资源(如生命星球等)的探索逐步提上日程。目前星际分子反应过程的特征光谱是行星生成年代和行星资源环境勘探的唯一手段,因而星际化学显得越来越重要。近几十年国际上通过对宇宙谱线的分析,已发现太空中存在的星际分子超过200种,尤其是星际有机分子的发现,不仅促进了人类对星云及恒星演变的了解,更是增大了外星生命存在的可能性。实验室模拟星际环境下(高真空、超低温)的分子光谱及反应动力学研究极大的促进了星际化学的发展。目前星际化学的主要研究组均集中在欧美发达国家,如美国、德国和英国均有数家乃至十数家高水平的研究组专门从事星际化学的研究,而中国目前还没有一个研究组专门从事这方面的工作。我们课题组过去十多年来利用分子反应动力学手段对星际化学中的一些关键科学问题也进行了系列的研究,如氢原子相关基元反应研究、超低温气相水分子的极紫外光谱和光化学反应机理研究等等。

实验手段:
实验室基于国际上首套运行于真空紫外波段的自由电子激光建成分子光化学实验线站,集成里德堡氢原子时间飞行谱技术和离子成像技术,在真空紫外光化学研究上具有独一无二的优势。可以对许多小分子如H2O、CO2、OCS、SO2、NO2、H2S、NH3、CH3OH、HI、CH4、C2H2、C2H6等进行系统的光化学动力学研究。


代表性文章
Photodissociation dynamics of H2O at 111.5 nm by a vacuum ultraviolet free electron laser, Heilong Wang, Yong Yu, Yao Chang, Shu Su, Shengrui Yu, Qinming Li, Kai Tao, Hongli Ding, Jiayue Yang, Guanglei Wang, Li Che, Zhigang He, Zhichao Chen, Xingan Wang, Weiqing Zhang, Dongxu Dai, Guorong Wu, Kaijun Yuan, and Xueming Yang, J. Chem. Phys. 148, 124301 (2018). pdf

Photodissociation dynamics of nitrous oxide near 145 nm: the O(1S0) and O(3PJ=2,1,0) product channels, Dongfu Yuan, Shengrui Yu, Ting Xie, Wentao Chen, Siwen Wang, Yuxi Tan, Tao Wang, Kaijun Yuan, Xueming Yang, and Xingan Wang, J. Phys. Chem. A 122, 2663(2018). pdf

Vacuum ultraviolet photodissociation of hydrogen bromide, Shu Su, Yvonne Dorenkamp, Shengrui Yu, Alec M. Wodtke, Dongxu Dai, Kaijun Yuan, and Xueming Yang, Phys. Chem. Chem. Phys. 18, 15399 (2016).pdf

Photodissociation dynamics of HOD via the   electronic state, Shu Su, Hongzhen Wang, Zhichao Chen, Shengrui Yu, Dongxu Dai, Kaijun Yuan, and Xueming Yang, J. Chem. Phys. 143, 184302 (2015).pdf

Photodissociation Dynamics of Diacetylene Rydberg States, Hongzhen Wang, Shengrui Yu, Shu Su, Dongxu Dai, Kaijun Yuan, and Xueming Yang, J. Phys. Chem. A 119, 11313 (2015).pdf

Imaging the pair-correlated HNCO photodissociation: the NH(a1Δ)+ CO(X1Σ+) channel, Zhiguo Zhang, Zhichao Chen, Cunshun Huang, Yang Chen, Dongxu Dai, David H. Parker, and Xueming Yang, J. Phys. Chem. A 118, 2413 (2014).pdf

Ion-velocity map imaging study of photodissociation dynamics of acetaldehyde, Zhiguo Zhang, Zhichao Chen, Cuimei Zhang, Yanling Jin, Qun Zhang, Yang Chen, Cunshun Huang, Xueming Yang, Chin. J. Chem. Phys. 27, 249 (2014).pdf

Vibronically induced decay paths from the  -state of water and its isotopomers, Richard N Dixon, Olivea T A A, Lina Cheng, and Kaijun Yuan, J .Chem. Phys. 10, 138 (2013): pdf

Vacuum ultraviolet photodissociation dynamics of isocyanic acid: the hydrogen elimination channel, Shengrui Yu, Su Shu, Dongxu Dai, and Kaijun Yuan, J .Phys. Chem. A 50, 117 (2013): pdf

Competition between direct and indirect dissociation pathways in ultraviolet photodissociation of HNCO, Shengrui Yu, Su Shu, Yvonne Dorenkamp, and Kaijun Yuan, J .Phys .Chem. A 46, 117 (2013): pdf

Photodissociation dynamics of C4H2 at 164.41 nm: competitive dissociation pathways, Shengrui Yu, Su Shu, Yongwei Zhang, and Kaijun Yuan, J. Chem. Phys. 12, 139 (2013): pdf

Photodissociation of HOD via the   State: OD/OH branching ratio and OD bond dissociation energy, Lina Cheng, Yuan Cheng, and Kaijun Yuan, Chin. J. Chem. Phys. 2, 24 (2011): pdf

Rotational state specific dissociation dynamics of HOD  H + OD via two-photon excitation to the   electronic state, Lina Cheng, Kaijun Yuan, and Yuan Cheng, J. Phys. Chem. A 9, 115 (2011): pdf

Photodissociation dynamics of D2O via the   electronic state, Yuan Cheng, Lina Cheng, Qin Guo, and Kaijun Yuan, J. Chem. Phys. 10, 134 (2011): pdf

Photodissociation dynamics of H2O: effect of unstable resonances on the   electronic state, Yuan Cheng, Kaijun Yuan, and Lina Cheng, J. Chem. Phys. 6, 134 (2011): pdf

Photochemistry of the water molecule: adiabatic versus nonadiabatic dynamics, Kaijun Yuan, Richard N Dixon, and Xueming Yang, Accounts Chem. Res. 2, 44 (2011): pdf

Imaging CH3SH photodissociation at 204 nm: the SH + CH3 channel, Zhichao Chen, Quan Shuai, Andre´ T. J. B. Eppink, Bo Jiang, Dongxu Dai, Xueming Yang and David H. Parker, Phys. Chem. Chem. Phys. 13, 8531 (2011).pdf

Product pair correlation in CH3OH photodissociation at 157 nm: the OH + CH3 channel, Zhichao Chen, Andre T. J. B. Eppink, Bo Jiang, Gerrit C. Groenenboom, Xueming Yang and David H. Parker, Phys. Chem. Chem. Phys. 13, 2350 (2011).pdf


4、基元化学反应动力学研究 (负责人:吴国荣,袁开军)

介绍
化学反应:化学键的断裂和形成,涉及原子核的重新组合和电子云的重新分布。在微观层面上(原子、分子)理解一个化学反应是如何进行的是现代物理化学的一个研究热点,也在很多研究方向起到了关键的作用,例如催化、化学激光、有机合成等。在本研究方向,我们结合分子束技术、现代激光技术(包括自由电子激光技术)、超高真空技术等,并通过与理论的密切合作,来研究基元的化学反应是如何进行的,包括反应的快慢,反应的产物通道、反应产物的量子态分布、不同自由度的能量对反应的影响等。

实验手段:交叉分子束-时间切片的离子速度成像
基元化学反应动力学研究用的主要设备是交叉分子束-时间切片的离子速度成像仪。该仪器是我们自行研制的,结合交叉分子束技术和时间切片离子速度成像技术。基元化学反应的两个反应物分别利用两个分子束来制备,包括初始量子态的制备,可以通过利用不同的分子束条件,两个分子束之间的夹角等来改变反应的碰撞能。在反应区两个分子束交叉,在单次碰撞条件下,发生基元化学反应。利用激光来量子态选择地电离中性的反应产物,然后利用时间切片离子速度成像的方法来测量反应产物的角分布,速度分布等,基于这些信息,通常再结合理论计算从而来研究基元化学反应是如何进行的。


代表新文章
CH Stretching Excitation Promotes its Cleavage in F + CHD3(1=1) → HF + CD3 Reaction at Low Collision Energies, Dong Zhang, Jiayue Yang, Zhen Chen, Rongjun Chen, Bo Jiang, Dongxu Dai, Guorong Wu, Donghui Zhang, and Xueming Yang, Phys. Chem. Chem. Phys. 19, 13070 (2017).pdf

Crossed molecular beam study of H+CH4 and H+CD4 reactions: vibrationally excited CH3/CD3 product channels, Wentao Chen, Shengrui Yu, Daofu Yuan, Ting Xie, Jiayue Yang, Siwen Wang, Chang Luo, Yuxin Tan, Yue Miao, Weiqing Zhang, Guorong Wu, Xueming Yang, and Xingan Wang, Chin. J. Chem. Phys. 30, 609 (2017).pdf

Effect of CH stretching excitation on the reaction dynamics of F + CHD3 → DF + CHD2, Jiayue Yang, Dong Zhang, Zhen Chen, Florian Blauert, Bo Jiang, Dongxu Dai, Guorong Wu, Donghui Zhang, and Xueming Yang, J. Chem. Phys. 143, 044316 (2015).pdf

State-to-state dynamics of high-n Rydberg H-atom scattering with H2: inelastic scattering and reactive scattering, Shengrui Yu, Shu Su, Dongxu Dai, Kaijun Yuan, and Xueming Yang, Phys. Chem. Chem. Phys. 17, 9659 (2015). pdf

Velocity map imaging study of the reaction dynamics of the H + CH4 → H2 + CH3 reaction: the isotope effects, Huilin Pan, Jiayue Yang, Quan Shuai, Dong Zhang, Weiqing Zhang, Guorong Wu, Dongxu Dai, Bo Jiang, Donghui Zhang, and Xueming Yang, J. Phys. Chem. A 118, 2426-2430 (2014).pdf
  
Effect of antisymmetric C-H stretching excitation on the dynamics of O(1D) + CH4 → OH + CH3, Huilin Pan, Jiayue Yang, Dong Zhang, Quan Shuai, Dongxu Dai, Guorong Wu, Bo Jiang, and Xueming Yang, J. Chem. Phys. 140, 154305 (2014).pdf

How is C-H vibrational energy redistributed in F + CHD3(1=1) → HF + CD3? Jiayue Yang, Dong Zhang, Bo Jiang, Dongxu Dai, Guorong Wu, Donghui Zhang, and  Xueming Yang, J. Phys. Chem. Lett. 5, 1790-1794 (2014).pdf

State-to-state dynamics of the H*(n) + HD  D*(n’) + H2 reactive scattering, Shengrui Yu, Su Shu, Dongxu Dai, and Kaijun Yuan, J. Chem. Phys. 3, 140(2014): pdf

Observation of extremely high vibrational excitation in O2 from inelastic scattering of Rydberg H atom with O2,Shengrui Yu, Su Shu, and Kaijun Yuan, J. Phys Chem. Lett. 17, 3 (2012): pdf

State-to-state differential cross-sections for the reactive scattering of H*(n) with o-D2, Shengrui Yu, Kaijun Yuan, and Hui Song, Chem .Sci. 9, 3 (2012): pdf

 
Links
Copyright 2017-2018. 中国科学院大连化学物理研究所 化学动力学研究中心 版权所有 辽ICP备05000861号 All Rights Reserved. 网站管理